Package: mmpca 2.0.3

mmpca: Integrative Analysis of Several Related Data Matrices

A generalization of principal component analysis for integrative analysis. The method finds principal components that describe single matrices or that are common to several matrices. The solutions are sparse. Rank of solutions is automatically selected using cross validation. The method is described in Kallus et al. (2019) <arxiv:1911.04927>.

Authors:Jonatan Kallus [aut], Felix Held [ctb, cre]

mmpca_2.0.3.tar.gz
mmpca_2.0.3.zip(r-4.5)mmpca_2.0.3.zip(r-4.4)mmpca_2.0.3.zip(r-4.3)
mmpca_2.0.3.tgz(r-4.4-x86_64)mmpca_2.0.3.tgz(r-4.4-arm64)mmpca_2.0.3.tgz(r-4.3-x86_64)mmpca_2.0.3.tgz(r-4.3-arm64)
mmpca_2.0.3.tar.gz(r-4.5-noble)mmpca_2.0.3.tar.gz(r-4.4-noble)
mmpca_2.0.3.tgz(r-4.4-emscripten)mmpca_2.0.3.tgz(r-4.3-emscripten)
mmpca.pdf |mmpca.html
mmpca/json (API)
NEWS

# Install 'mmpca' in R:
install.packages('mmpca', repos = c('https://cyianor.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cyianor/mmpca/issues

Uses libs:
  • gsl– GNU Scientific Library (GSL)
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

data-integrationgslcppopenmp

3.00 score 2 stars 241 downloads 1 exports 4 dependencies

Last updated 9 days agofrom:a1124768a5. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 24 2025
R-4.5-win-x86_64OKJan 24 2025
R-4.5-linux-x86_64OKJan 24 2025
R-4.4-win-x86_64OKJan 24 2025
R-4.4-mac-x86_64OKJan 24 2025
R-4.4-mac-aarch64OKJan 24 2025
R-4.3-win-x86_64OKJan 24 2025
R-4.3-mac-x86_64OKJan 24 2025
R-4.3-mac-aarch64OKJan 24 2025

Exports:mmpca

Dependencies:digestRcppRcppEigenRcppGSL